SHINE: A Scalable In-Context Hypernetwork for Mapping Context to LoRA in a Single Pass
#SHINE #Large Language Models #LoRA #Hypernetwork #In-context learning #Machine learning efficiency
📌 Key Takeaways
- Introduction of SHINE, a scalable hypernetwork for mapping context to LoRA adapters.
- The system generates high-quality model weights in a single pass, increasing efficiency.
- SHINE reuses frozen LLM parameters to maintain high performance with fewer new parameters.
- The innovation bridges the gap between fast in-context learning and precise model fine-tuning.
📖 Full Retelling
🏷️ Themes
Artificial Intelligence, Machine Learning, Technology
📚 Related People & Topics
Large language model
Type of machine learning model
A large language model (LLM) is a language model trained with self-supervised machine learning on a vast amount of text, designed for natural language processing tasks, especially language generation. The largest and most capable LLMs are generative pre-trained transformers (GPTs) that provide the c...
LoRA (machine learning)
Parameter-efficient fine-tuning technique for large language models
LoRA (Low-Rank Adaptation) is a parameter-efficient fine-tuning technique for large language models and other deep neural networks. Introduced in 2021 by researchers at Microsoft, LoRA enables adaptation of pre-trained models to specific tasks while requiring significantly fewer computational resour...
🔗 Entity Intersection Graph
Connections for Large language model:
- 🌐 Reinforcement learning (7 shared articles)
- 🌐 Machine learning (5 shared articles)
- 🌐 Theory of mind (2 shared articles)
- 🌐 Generative artificial intelligence (2 shared articles)
- 🌐 Automation (2 shared articles)
- 🌐 Rag (2 shared articles)
- 🌐 Scientific method (2 shared articles)
- 🌐 Mafia (disambiguation) (1 shared articles)
- 🌐 Robustness (1 shared articles)
- 🌐 Capture the flag (1 shared articles)
- 👤 Clinical Practice (1 shared articles)
- 🌐 Wearable computer (1 shared articles)
📄 Original Source Content
arXiv:2602.06358v1 Announce Type: cross Abstract: We propose SHINE (Scalable Hyper In-context NEtwork), a scalable hypernetwork that can map diverse meaningful contexts into high-quality LoRA adapters for large language models (LLM). By reusing the frozen LLM's own parameters in an in-context hypernetwork design and introducing architectural innovations, SHINE overcomes key limitations of prior hypernetworks and achieves strong expressive power with a relatively small number of parameters. We i