Time Series Reasoning via Process-Verifiable Thinking Data Synthesis and Scheduling for Tailored LLM Reasoning
#Time Series #Large Language Models #Chain-of-Thought #Reinforcement Learning #arXiv #Data Synthesis #Algorithmic Scheduling
📌 Key Takeaways
- Researchers developed a framework to integrate advanced Chain-of-Thought reasoning with time series data analysis.
- The system uses process-verifiable data synthesis to ensure the accuracy of intermediate reasoning steps.
- A new scheduling mechanism allows LLMs to adapt their computational effort to the complexity of specific temporal tasks.
- The breakthrough aims to move time series AI beyond simple pattern recognition toward sophisticated, human-like deliberation.
📖 Full Retelling
🏷️ Themes
Artificial Intelligence, Data Science, Machine Learning
📚 Related People & Topics
Large language model
Type of machine learning model
A large language model (LLM) is a language model trained with self-supervised machine learning on a vast amount of text, designed for natural language processing tasks, especially language generation. The largest and most capable LLMs are generative pre-trained transformers (GPTs) that provide the c...
Reinforcement learning
Field of machine learning
In machine learning and optimal control, reinforcement learning (RL) is concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learnin...
Time series
Sequence of data points over time
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data.
🔗 Entity Intersection Graph
Connections for Large language model:
- 🌐 Reinforcement learning (7 shared articles)
- 🌐 Machine learning (5 shared articles)
- 🌐 Theory of mind (2 shared articles)
- 🌐 Generative artificial intelligence (2 shared articles)
- 🌐 Automation (2 shared articles)
- 🌐 Rag (2 shared articles)
- 🌐 Scientific method (2 shared articles)
- 🌐 Mafia (disambiguation) (1 shared articles)
- 🌐 Robustness (1 shared articles)
- 🌐 Capture the flag (1 shared articles)
- 👤 Clinical Practice (1 shared articles)
- 🌐 Wearable computer (1 shared articles)
📄 Original Source Content
arXiv:2602.07830v1 Announce Type: new Abstract: Time series is a pervasive data type across various application domains, rendering the reasonable solving of diverse time series tasks a long-standing goal. Recent advances in large language models (LLMs), especially their reasoning abilities unlocked through reinforcement learning (RL), have opened new opportunities for tackling tasks with long Chain-of-Thought (CoT) reasoning. However, leveraging LLM reasoning for time series remains in its infa