Meta Context Engineering via Agentic Skill Evolution
📖 Full Retelling
arXiv:2601.21557v2 Announce Type: replace
Abstract: The operational efficacy of large language models relies heavily on their inference-time context. This has established Context Engineering (CE) as a formal discipline for optimizing these inputs. Current CE methods rely on manually crafted harnesses, such as rigid generation-reflection workflows and predefined context schemas. They impose structural biases and restrict context optimization to a narrow, intuition-bound design space. To address
📄 Original Source Content
arXiv:2601.21557v2 Announce Type: replace Abstract: The operational efficacy of large language models relies heavily on their inference-time context. This has established Context Engineering (CE) as a formal discipline for optimizing these inputs. Current CE methods rely on manually crafted harnesses, such as rigid generation-reflection workflows and predefined context schemas. They impose structural biases and restrict context optimization to a narrow, intuition-bound design space. To address