Reinforcing Chain-of-Thought Reasoning with Self-Evolving Rubrics
📖 Full Retelling
arXiv:2602.10885v1 Announce Type: new
Abstract: Despite chain-of-thought (CoT) playing crucial roles in LLM reasoning, directly rewarding it is difficult: training a reward model demands heavy human labeling efforts, and static RMs struggle with evolving CoT distributions and reward hacking. These challenges motivate us to seek an autonomous CoT rewarding approach that requires no human annotation efforts and can evolve gradually. Inspired by recent self-evolving training methods, we propose \t
📄 Original Source Content
arXiv:2602.10885v1 Announce Type: new Abstract: Despite chain-of-thought (CoT) playing crucial roles in LLM reasoning, directly rewarding it is difficult: training a reward model demands heavy human labeling efforts, and static RMs struggle with evolving CoT distributions and reward hacking. These challenges motivate us to seek an autonomous CoT rewarding approach that requires no human annotation efforts and can evolve gradually. Inspired by recent self-evolving training methods, we propose \t